Tunable moiré bands and strong correlations in small-twist-angle bilayer graphene.
نویسندگان
چکیده
According to electronic structure theory, bilayer graphene is expected to have anomalous electronic properties when it has long-period moiré patterns produced by small misalignments between its individual layer honeycomb lattices. We have realized bilayer graphene moiré crystals with accurately controlled twist angles smaller than 1° and studied their properties using scanning probe microscopy and electron transport. We observe conductivity minima at charge neutrality, satellite gaps that appear at anomalous carrier densities for twist angles smaller than 1°, and tunneling densities-of-states that are strongly dependent on carrier density. These features are robust up to large transverse electric fields. In perpendicular magnetic fields, we observe the emergence of a Hofstadter butterfly in the energy spectrum, with fourfold degenerate Landau levels, and broken symmetry quantum Hall states at filling factors ±1, 2, 3. These observations demonstrate that at small twist angles, the electronic properties of bilayer graphene moiré crystals are strongly altered by electron-electron interactions.
منابع مشابه
Evidence for interlayer coupling and moiré periodic potentials in twisted bilayer graphene.
We report a study of the valence band dispersion of twisted bilayer graphene using angle-resolved photoemission spectroscopy and ab initio calculations. We observe two noninteracting cones near the Dirac crossing energy and the emergence of van Hove singularities where the cones overlap for large twist angles (>5°). Besides the expected interaction between the Dirac cones, minigaps appeared at ...
متن کاملMoire bands in twisted double-layer graphene.
A moiré pattern is formed when two copies of a periodic pattern are overlaid with a relative twist. We address the electronic structure of a twisted two-layer graphene system, showing that in its continuum Dirac model the moiré pattern periodicity leads to moiré Bloch bands. The two layers become more strongly coupled and the Dirac velocity crosses zero several times as the twist angle is reduc...
متن کاملNanoARPES of twisted bilayer graphene on SiC: absence of velocity renormalization for small angles
The structural and electronic properties of twisted bilayer graphene (TBG) on SiC(000) grown by Si flux-assisted molecular beam epitaxy were investigated using scanning tunneling microscopy (STM) and angle-resolved photoelectron spectroscopy with nanometric spatial resolution. STM images revealed a wide distribution of twist angles between the two graphene layers. The electronic structure recor...
متن کاملAngle-resolved Raman imaging of interlayer rotations and interactions in twisted bilayer graphene.
Few-layer graphene is a prototypical layered material, whose properties are determined by the relative orientations and interactions between layers. Exciting electrical and optical phenomena have been observed for the special case of Bernal-stacked few-layer graphene, but structure-property correlations in graphene which deviates from this structure are not well understood. Here, we combine two...
متن کاملSelectively enhanced photocurrent generation in twisted bilayer graphene with van Hove singularity
stacked bilayer graphene (b), (c), (d), (e), and (f) are twisted bilayer graphene with twist angle of 8
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 114 13 شماره
صفحات -
تاریخ انتشار 2017